拉曼技术在泌尿系统肿瘤检测中的应用
泌尿系统肿瘤影响大量个体,并且在手术后经常复发和进展,需要终身监测。因此,泌尿系统癌症的早期和精确诊断对于预防和治疗非常重要。组织病理学是目前诊断的黄金标准,但它具有侵入性、耗时且不便于初始诊断和再回静脉随访评估。内窥镜可以直接见证肿瘤的结构,但侵入性检测很可能对患者的器官造成伤害,并且容易在经常检查的患者中产生其他危害。影像学检查是一种有价值的非侵入性和快速评估工具;然而,可能难以确定病变的类型,并且对早期肿瘤检测的敏感性有限。检测肿瘤的传统方法有其自身的局限性。因此,迫切需要结合无创检测、无标记检测、高灵敏度和高特异性的检测方法来辅助临床诊断。光学诊断和成像越来越多地用于各个领域的医疗保健环境。拉曼散射可以根据与常见分子键的振动模式的相互作用来评估癌细胞或组织中分子特征的变化。由于无标记、化学选择性强、灵敏度高等优点,拉曼散射,特别是具有高空间分辨率的相干拉曼散射显微镜成像,在生物医学研究中得到了广泛的应用。定量研究表明,它在膀胱癌、肾透明细胞癌、前列腺癌等癌症的检测和诊断中具有良好的应用。本文简要介绍了几种基于拉曼散射技术的非线性成像技术,包括拉曼光谱、相干反斯托克斯拉曼散射、受激拉曼散射和表面增强拉曼光谱。我们将讨论这些技术在检测泌尿系统恶性肿瘤中的应用。利用上述方法在研究中的优势和局限性来预测未来的研究方向。对于临床实践,拉曼散射技术旨在为临床实践的早期诊断、术中切缘和病理分级提供更准确、快速、无创的基础。
Hao Z, Yue SH, Zhou LQ. [Application of Raman-based technologies in the detection of urological tumors]. Beijing Da Xue Xue Bao Yi Xue Ban. 2022 Aug 18;54(4):779-784. Chinese. doi: 10.19723/j.issn.1671-167X.2022.04.033. PMID: 35950408; PMCID: PMC9385527. 现今主流的泌尿系统肿瘤检测手段存在各自的不足,应用于肿瘤诊断和复查具有一定的局限性。比如,组织病理学检查是泌尿系统恶性肿瘤诊断的“金标准”[1],但其有创、操作繁琐、所需诊断时间过长,多应用于术后确诊和预后评估,而术中快速冰冻病理难以区分肿瘤亚型[2]。影像学检查尽管具有无创、快速的优势,但较难明确病变性质,并且对早期肿瘤诊断灵敏度低[3]。因此,临床亟需快速、精准的泌尿系统恶性肿瘤检测方法。 分子光谱已在许多领域得到应用,通过增强成像对比度、分辨率和分子特异性等性能使其成为生物医学领域研究的有力手段。过去30年里,拉曼光谱技术已广泛应用于生物化学分析。拉曼光谱是分子水平上高度特异性的指纹散射信号,可提供物质的分子成分和结构信息[4],能够检测出肿瘤细胞中基本成分(如蛋白质、核酸、脂质和碳水化合物)结构的变化[5-6]。拉曼光谱技术作为一种快速且无创的分析方法,无需任何样品预处理和修饰,且不会受到组织、血液、尿液等样品中水分的干扰,因此,非常适合于体内或离体癌细胞和组织的检测[7-9]。本文将讨论拉曼光谱技术在三种最常见泌尿系统肿瘤(前列腺癌、膀胱癌、肾细胞癌)中的应用现状和发展趋势。
1. 拉曼技术概述
拉曼散射是一种基于光与分子键振动模式的相互作用的散射现象,其产生的散射光子的频率取决于被照射分子化学键的振动和旋转特性[10],散射光子与入射光子频率之差称为拉曼位移。 拉曼光谱技术是基于拉曼散射效应的分子结构分析技术,拉曼信号源自分子化学键的振动,所以拉曼光谱的特征能带位置、强度和线宽提供了分子振动和旋转的信息,可以表征分子中不同的化学键或官能团[11]。因此,拉曼光谱可用于识别分子的“指纹”信息,长期以来广泛用于分析细胞和组织中的化学成分,并可以无需任何标记就非侵入性地检测到发生疾病转化的细胞或组织中分子特征的改变[12],具有作为癌症诊断新型工具的潜力。然而,基于自发拉曼散射光谱的成像耗时很长,难以实现生物活体动态分子成像。 为了提高拉曼散射信号水平,相干反斯托克斯拉曼散射(coherent anti-Stokes Raman scattering,CARS)和受激拉曼散射(stimulated Raman scattering, SRS)显微镜被相继开发。在CARS中,需要一束泵浦(频率为ωP)和一束斯托克斯(频率为ωS)激光来激发样品,当入射光的ωP-ωS与所测量的分子化学键振动频率Ω相等时,会将样品激发出一束新的频率为2ωP-ωS的光,即CARS[13]。只有当ωP-ωS靠近所探测物质的拉曼特征峰时CARS信号才会急剧增强,这使得CARS具有良好的化学特异性[14-15]。由于CARS现象只有在两束光同时到达样品同一位置时才会发生,所以其具有三维成像能力[15]。然而,CARS是一个非线性四波混频过程,其信号包含与样品拉曼位移无关的非共振部分,致使CARS信号相对拉曼光谱发生移动,导致CARS成像中的激发波长选择以及物质识别十分困难,并且其信号中非共振背景很可能湮没了一些指纹区微弱信号,最终导致结果不准确。 SRS也需泵浦光(频率为ωP)和斯托克斯(频率为ωS)两束激光激发,但在成像原理上SRS信号没有非共振背景的干扰,这使得SRS显微成像成为一种高灵敏和可定量的生化成像方法[16]。SRS过程中入射光的光子能量与待测物分子(化学键振动频率为Ω)之间发生交换,泵浦光束强度减弱(受激拉曼损失),斯托克斯光束强度增加(受激拉曼增益),最后通过探测受激拉曼损失或受激拉曼增益[17]得到分子的SRS信号。其中,两束入射光只有在严格满足ωP-ωS=Ω时才能够发生SRS现象,该过程中不会涉及CARS中的非共振背景信号,因而SRS所携带的光谱信息与分子自发拉曼的光谱信息相同,信号强度与分子浓度线性相关[18],也就是说SRS可以对物质分子含量进行定量分析。SRS信号强度比自发拉曼增强了6个数量级左右,信号采集时间显著缩短,成像速度更快,可达视频帧率[19]。 此外,纳米技术的快速发展推动了表面增强拉曼散射(surface-enhanced Raman scattering,SERS)的发展[20-21]。SERS使用激光对纳米结构或粗糙的金属表面进行激发[20],通过对这些纳米结构或金属结构的激发来驱动表面电荷以产生局部等离子体场,即增强的电场。当分子靠近表面并因此增强电场时,可以观察到拉曼信号的大幅增强,导致拉曼信号比正常拉曼散射大8~14个数量级[21],这使得无需任何荧光标记就可以检测低浓度样品。
2. 拉曼技术在膀胱癌检测中的应用
目前膀胱癌诊断和筛查主要依靠膀胱镜检查和尿液细胞学检查[22],因膀胱癌复发率高(50%~70%)[23],患者确诊后必须定期复查。膀胱镜对微小肿瘤的诊断准确性较低,尤其是膀胱原位癌,其漏检率高达50%[24-25],且膀胱镜具有侵入性,相比较而言,尿液细胞学检查具有非侵入的优势,但又易受病理医师主观因素的影响,且对低级别膀胱癌诊断的灵敏度只有16%[26]。 基于此,研究者们正在推动基于尿液样本中的基因表达差异或蛋白质生物标志物的膀胱癌诊断和监测系统[27]。但由于样品存放时间和处理条件的变化,使得尿液样本中蛋白质、DNA和RNA发生降解,导致尿液中此类生物标志物的灵敏度和特异性不够稳定。目前美国食品和药物管理局(Food and Drug Administration,FDA)批准用于诊断膀胱癌的尿液生物标志物检测试剂盒灵敏度和特异性均较低,比如:膀胱肿瘤抗原BTA-TRAK试剂盒分别为66%和75%[28],核基质蛋白22试剂盒分别为55%和88%[29],免疫细胞/Cyt+测定试剂盒分别为73%和66%[30],UroVysion荧光原位杂交检测试剂盒分别63%和87%[28]。此外,较高的测试成本也限制了这些试剂盒在临床中的应用[27-28]。 2002年Stone等[31]首次将拉曼光谱应用于膀胱癌检测,验证了拉曼光谱在上皮癌和癌前病变分类中应用的可能性。该研究对离体状态下的12对膀胱癌和癌旁组织进行无标记拉曼光谱采集,在20 s内得到了一条拉曼光谱数据,对比分析得出拉曼光谱区分两种组织的灵敏度和特异性分别为89.6%和97.2%。虽然该研究的样本量较少,但也初步提示利用拉曼光谱技术探测生物分子信息从而识别膀胱癌具有可行性,为后期应用拉曼光谱检测膀胱肿瘤的研究开拓了思路。为了区分膀胱镜下难以辨别的膀胱炎症与早期膀胱肿瘤组织,Crow等[32]利用拉曼光谱技术在体外对人源膀胱上皮、膀胱炎、膀胱尿路上皮癌组织进行识别,预测膀胱上皮组织病理类型,得出各组的灵敏度和特异性都大于90%。此外,他们还将拉曼光谱技术应用于低级别膀胱癌(T1和Ta)的识别,同样得到了理想的结果,预测的灵敏度和特异度都达到了96%[32]。为了进一步提升拉曼光谱技术对膀胱癌分类的准确性,de Jong等[33]将拉曼光谱与主成分分析、线性判别分析等统计分析方法相结合,分析膀胱癌组织的病理分级,建立了一套基于拉曼光谱的膀胱癌组织病理类型的检测方案,分类准确率为93%,灵敏度为94%,特异性为92%。但上述研究均基于体外组织切片,并未进行在体临床验证。2010年Draga等[34]完成了第一项在体拉曼光谱研究,通过膀胱癌与正常膀胱上皮组织差异光谱比对,发现膀胱癌的特定氨基酸峰强度的升高(可能与DNA峰高增加有关),最终得出拉曼光谱鉴别正常膀胱上皮和膀胱癌组织的灵敏度可达到85%,特异性为79%。提示在经尿道切除膀胱肿瘤的过程中,可以将拉曼光谱应用于膀胱镜检查进行实时诊断。但受探头的限制,拉曼光谱的探测光斑面积只有平方毫米级别,因而筛选整个膀胱非常耗时,目前只能作为膀胱镜的辅助检测手段,未来可结合其他广视野的内镜检测手段来提高拉曼光谱的检测能力。 针对目前传统细胞学检测灵敏度较低的问题,Shapiro等[11]结合膀胱癌组织的拉曼光谱,检测膀胱癌患者尿液中脱落细胞平均光谱,建立了基于尿脱落细胞的膀胱癌诊断模型,灵敏度为92%(对于高级肿瘤为100%),特异性为91%,阳性预测值为94%,阴性预测值为88%,此外,该研究还实现了基于拉曼光谱的二维成像技术。为了进一步明确脱落细胞的种类,Yosef等[9]对不同类型尿液脱落细胞进行拉曼光谱鉴定,发现拉曼光谱可以在细胞水平上提供足够的生物学信息,能够以100%的准确率区分正常和癌变的尿路上皮细胞。为了提高拉曼信号强度,以利于拉曼光谱检测应用于临床,更多的研究致力于使用SERS技术来实现对膀胱癌的检测与诊断。2019年Zhang等[35]的研究发现,SERS技术采集尿液标本的光谱信号强度是普通拉曼光谱信号的107倍,使光谱信号更容易被探测,并能在10 min内得到检测报告,其检测灵敏度高达91.7%,特异性高达100%。为了验证SERS技术对低级别膀胱肿瘤的检测效果,Hu等[36]利用SERS检测膀胱癌患者和正常人尿沉渣平均光谱,得出SERS技术对低级别肿瘤总的诊断灵敏度和特异性分别为97.53%和90.80%,对高级别肿瘤分别为100%和98.85%。 由此可见,拉曼光谱显著提高了诊断的灵敏度。相比于其他几种FDA批准的基于尿液生物标志物的膀胱癌检测方法,拉曼光谱无需染色处理,大大缩短了检测时间,提高了检测效率。除了拉曼光谱检测外,未来可发展基于拉曼光谱二维成像技术的单细胞水平检测,以获得细胞水平的二维图像。尽管基于拉曼光谱的二维成像受限于成像的速度而无法满足临床检测需求,但可基于拉曼二维图像进行病理伪彩处理,以贴近病理染色图像形式直观地呈现给医师。
3. 拉曼技术在肾细胞癌检测中的应用
根据欧洲泌尿外科协会(European Association of Urology,EAU)指南,应将保留肾功能的保肾手术作为肾细胞癌早期阶段(T1a及部分T1b)治疗中的首选术式,并对晚期肾细胞癌(T3 ~ T4)进行根治性肾切除术[37]。因此,早期诊断和筛查肾细胞癌以及根据肾细胞癌的分级相应地调整手术计划对患者大有裨益。目前临床上使用的肾肿块活组织检查得到的肾细胞癌病理特征准确性低至79%[38],并且其在病理分级中的作用也存在争议[39];传统组织病理作为确定肾细胞癌亚型的金标准,繁琐耗时[1],难以满足术中实时指导手术的需求。另外,肾周脂肪浸润对肾细胞癌患者手术方案的选择也具有重要影响,目前的影像学检查,如磁共振成像和计算机断层成像都难以识别肾周脂肪浸润[40]。 2009年Wills等[41]验证了拉曼光谱技术在区分正常肾脏组织和肾细胞癌组织中的可行性(诊断准确率为96%),随后的研究相继证实了拉曼光谱技术在肾细胞癌组织识别方面的优势,其平均诊断准确率为96%(93%~100%)[42-44]。此外,拉曼光谱的时效性也使其具备应用于术中切缘检测的潜力。为了满足术中定位切缘的需求,Bensalah等[10]将拉曼光谱技术与光学纤维内镜进行结合,对34对手术离体新鲜肾细胞癌组织和正常组织进行拉曼光谱检测,得出的组织分类准确率为93%,灵敏度为96%,特异性为87%,但因该研究纳入的样本量有限而使其可信度受到一定限制;此外,该研究还对良性和恶性肾肿瘤之间拉曼光谱差异进行了对比,但由于仅有2例良性肿瘤样本,可靠性还有待进一步探索。为了研究良性和恶性肾肿瘤之间拉曼光谱的差异性,Couapel等[42]对53例恶性肿瘤和7例良性肿瘤分别进行了拉曼光谱采集,得出其对组织分类的准确性为96%,识别直径 < 4 cm肾肿瘤的准确率为93%。上述两项研究均提示拉曼光谱可用于检测肾细胞癌术中切缘,但两者均为离体组织研究,样本量较少,且未能考虑血红蛋白对光谱信号的影响(血红蛋白的拉曼光谱信号强度较高[9]),拉曼光谱应用于术中切缘检测仍存在瓶颈。 近年,研究者们将目光转向肾细胞癌诊断,希望通过拉曼光谱技术提高肾肿块活组织检查的准确性。2015年Mert等[44]利用SERS技术提高光谱信号以增强检测的稳定性,采集40例肾脏正常组织和40例肾细胞癌活检组织标本(T1期28例,T2~T3期12例)共800个SERS光谱,并结合主成分分析与线性判别分析对光谱进行探究,得出肾细胞癌晚期(T2~T3)、早期(T1)与正常组织分类的灵敏度分别为93%和100%,特异性分别为98%和86%,准确率分别为91%和90%,表明SERS是一种识别肾细胞癌不同分期的潜在技术手段。为了探究拉曼光谱技术对肾细胞癌亚型分类的准确性,He等[7]利用拉曼光谱对肾透明细胞癌、乳头状肾细胞癌、肾上腺嗜铬细胞瘤组织进行识别,判别准确性达到89.35%,可以为精准治疗提供指导。此外,该研究还进一步利用拉曼光谱结合支持向量机(support vector machine,SVM)模型,通过分子水平上高度特异性的指纹区域识别肾癌和肾周脂肪,准确率达到92.5%,灵敏度和特异性分别为95.8%和88.8%,说明其可用于识别肾周脂肪浸润,指导肾肿瘤切除策略。
4. 拉曼技术在前列腺癌检测中的应用
前列腺癌诊断的金标准仍依赖于经直肠超声引导下穿刺活检,但其准确率只有60%左右,且重复活检阳性率达28%[45]。此外,广泛用于前列腺筛查和诊断的生物标志物是前列腺特异性抗原(prostate-specific antigen,PSA),但PSA水平升高并非前列腺癌所特有,良性前列腺增生和前列腺炎患者也常见PSA水平升高[46]。因此,迫切需要生物标志物来提高前列腺癌诊断的特异性和灵敏度。前列腺癌的早期和准确诊断对于降低不良反应和死亡率起着至关重要的作用。 2003年Crow等[47]分析了14例良性前列腺增生和13例前列腺癌冰冻组织共450个拉曼光谱数据,发现两种组织细胞内的核酸和糖原浓度存在显著差异,该研究进一步分析了不同Gleason分级(<7,=7,>7)的前列腺癌组织拉曼光谱数据,建立了准确率为89%的基于拉曼光谱的前列腺癌分类模型,表明拉曼光谱技术可用于体外区分良性前列腺增生和不同Gleason分级的前列腺癌。但该研究只对核酸和糖原含量的差异性做了分析,准确率还有待提高,为了对分子差异类型有更深入的了解,还需从前列腺组织的拉曼光谱中挖掘更多的生化信息。随后,Crow等[48]又针对4种前列腺癌细胞系(LNCap、MDA-PCa-2b、DU145、PC3)进行拉曼光谱分析,发现各细胞系间DNA、蛋白质、脂质、糖原浓度均有差异,据此建立的分类算法的总体灵敏度为98%,特异性为99%,进一步证明了拉曼光谱技术具有区分不同侵袭性前列腺癌的能力,可在临床实践中用于前列腺癌的诊断和分级。 以上研究都是基于单纯光谱技术,为了对分子在样本中的位置进行可视化,Tollefson等[49]使用基于拉曼光谱的二维成像观察到转移和未发生转移的前列腺癌患者组织之间的拉曼光谱存在显著差异,表明有望通过该技术识别有肿瘤进展风险的患者。但基于拉曼光谱的二维成像的速度较慢,在临床应用时会受到限制。随着快速相干拉曼成像技术的发展,2014年Yue等[18]通过SRS显微成像和拉曼光谱技术,分析了前列腺癌细胞中单个脂滴成分,发现了前列腺癌组织中存在异常的胆固醇酯积累,表明胆固醇酯可作为侵袭性前列腺癌的诊断标志物,但此方案仍需要进一步临床验证。 此外,为了使检测方式更易于患者接受,拉曼技术的研究者将目光转向了前列腺癌的微创或无创检测。Li等[50]对93例前列腺癌患者和68位健康人的血清SERS数据进行SVM分析,获得了98.1%的分类准确性,初步证明了使用无标记血清SERS分析技术结合SVM诊断算法在无创前列腺癌筛查中的巨大潜力。Chen等[51]使用SERS技术观察到了低风险和高风险前列腺癌拉曼光谱的区别,检测的准确率为92.3%,敏感性为89.5%,特异性为95%,表明SERS诊断方法可用于提高PSA异常患者的活检阳性率,但检测灵敏度和准确率还有待提高。2019年Gao等[52]开发了一种新型基于SERS的微流控芯片,该芯片对PSA的检出限为0.1 μg/L,且可在5 min内完成诊断,在前列腺癌早期筛查中的应用前景广阔。此外,还可在前列腺癌的早期筛查中应用SERS技术检测血浆[53]、尿液(准确率为92%)[54]或者精液(总体诊断准确率为95%,灵敏度为100%,特异性为89%)[55],但均有待进一步临床验证。 综上,拉曼散射技术的优势在于高灵敏度和特异性,可以快速准确地区分癌或癌前病变组织与正常组织,凭借对生物分子进行无标记和高灵敏度原位分析的能力,拉曼散射技术为肿瘤诊断提供了强大的工具。从拉曼光谱的发展到纳米粒子增强和非线性拉曼技术的开发,拉曼光谱技术在科学研究和临床应用中都显示出良好前景,仪器、方法和数据分析的进步使拉曼显微成像从体外细胞分析到体内临床成像的各种应用均成为可能。拉曼光谱、SERS和非线性光谱技术的发展取得了令人瞩目的进展。针对泌尿系统恶性肿瘤现有检测方法的灵敏度和特异性不足的问题,基于拉曼散射的技术结合人工智能分析有望为临床提供更精准的早期诊断、术中检测和病理分级依据。目前,使用拉曼光谱进行肿瘤诊断的挑战仍然是如何为不同组织找到特异性的分子标记,高光谱SRS显微镜可以定量绘制不同类型的分子图像,有望成为识别肿瘤生物标志物的新方法。 然而,目前基于拉曼散射技术的检测手段还没有应用于临床,这是因为非线性光学显微成像的激光光源存在价格昂贵、占用空间大以及可靠性不高的问题,需要专业工程师进行维护,这使其在临床转化方面存在技术挑战,因此,将来需集中解决设备尺寸、可靠性、易操作性和检测成本效益等方面的问题。此外,还应在以下几个方面开展大量的研究以推进基于拉曼散射技术在临床应用的可能性:首先是使用手持快速拉曼成像技术进行原位分子诊断,例如手持拉曼光谱或高光谱SRS显微镜;其次是进行多模态的成像和光谱系统开发,整合每种分析方法的优点,从而提供更精准的癌症诊断工具。
References
1. Montironi R, Cheng L, Scarpelli M, et al. Pathology and genetics: Tumours of the urinary system and male genital system: Clinical implications of the 4th edition of the WHO classification and beyond. Eur Urol. 2016;70(1):120–123. doi: 10.1016/j.eururo.2016.03.011. [PubMed] [CrossRef] [Google Scholar]
2. Truong LD, Krishnan B, Shen SS. Intraoperative pathology consultation for kidney and urinary bladder specimens. Arch Pathol Lab Med. 2005;129(12):1585–1601. doi: 10.5858/2005-129-1585-IPCFKA. [PubMed] [CrossRef] [Google Scholar]
3. Babjuk M, Burger M, Capoun O, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (Ta, T1, and carcinoma in situ) Eur Urol. 2022;81(1):75–94. doi: 10.1016/j.eururo.2021.08.010. [PubMed] [CrossRef] [Google Scholar]
4. Haka AS, Shafer-Peltier KE, Fitzmaurice M, et al. Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci USA. 2005;102(35):12371–12376. doi: 10.1073/pnas.0501390102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
5. Fan T, Sun G, Sun X, et al. Tumor energy metabolism and potential of 3-bromopyruvate as an inhibitor of aerobic glycolysis: Implications in tumor treatment. Cancers (Basel) 2019;11(3):317. doi: 10.3390/cancers11030317. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
6. Hanahan D, Weinberg RA. Hallmarks of cancer: The next gene-ration. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013. [PubMed] [CrossRef] [Google Scholar]
7. He C, Wu X, Zhou J, et al. Raman optical identification of renal cell carcinoma via machine learning. Spectrochim Acta A Mol Biomol Spectrosc. 2021;252:119520. doi: 10.1016/j.saa.2021.119520. [PubMed] [CrossRef] [Google Scholar]
8. Hubbard TJE, Shore A, Stone N. Raman spectroscopy for rapid intra-operative margin analysis of surgically excised tumour specimens. Analyst. 2019;144(22):6479–6496. doi: 10.1039/C9AN01163C. [PubMed] [CrossRef] [Google Scholar]
9. Yosef HK, Krauβ SD, Lechtonen T, et al. Noninvasive diagnosis of high-grade urothelial carcinoma in urine by Raman spectral imaging. Anal Chem. 2017;89(12):6893–6899. doi: 10.1021/acs.analchem.7b01403. [PubMed] [CrossRef] [Google Scholar]
10. Bensalah K, Fleureau J, Rolland D, et al. Raman spectroscopy: A novel experimental approach to evaluating renal tumours. Eur Urol. 2010;58(4):602–608. doi: 10.1016/j.eururo.2010.06.002. [PubMed] [CrossRef] [Google Scholar]
11. Shapiro A, Gofrit ON, Pizov G, et al. Raman molecular imaging: A novel spectroscopic technique for diagnosis of bladder cancer in urine specimens. Eur Urol. 2011;59(1):106–112. doi: 10.1016/j.eururo.2010.10.027. [PubMed] [CrossRef] [Google Scholar]
12. Cui S, Zhang S, Yue S. Raman spectroscopy and imaging for cancer diagnosis. J Healthc Eng. 2018;2018:8619342. [PMC free article] [PubMed] [Google Scholar]
13. Evans CL, Xie XS. Coherent anti-stokes Raman scattering microscopy: Chemical imaging for biology and medicine. Annu Rev Anal Chem (Palo Alto Calif) 2008;1:883–909. doi: 10.1146/annurev.anchem.1.031207.112754. [PubMed] [CrossRef] [Google Scholar]
14. 李 润丰, 董 大山, 施 可彬. 光场调控在相干拉曼散射光谱与成像中的应用(特邀) 光子学报 2022;51(1):151–162. [Google Scholar]
15. Pope I, Payne L, Zoriniants G, et al. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds. Nat Nanotech-nol. 2014;9(11):940–946. doi: 10.1038/nnano.2014.210. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16. Freudiger CW, Min W, Saar BG, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 2008;322(5909):1857–1861. doi: 10.1126/science.1165758. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
17. Cheng JX, Xie XS. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science. 2015;350(6264):aaa8870. doi: 10.1126/science.aaa8870. [PubMed] [CrossRef] [Google Scholar]
18. Yue S, Li J, Lee SY, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19(3):393–406. doi: 10.1016/j.cmet.2014.01.019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
19. Zhang L, Wu Y, Zheng B, et al. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy. Theranostics. 2019;9(9):2541–2554. doi: 10.7150/thno.32655. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
20. Han XX, Rodriguez RS, Haynes CL, et al. Surface-enhanced Raman spectroscopy. Nat Rev Methods Primers. 2022;(1):87. [Google Scholar]
21. Pérez-Jiménez AI, Lyu D, Lu Z, et al. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem Sci. 2020;11(18):4563–4577. doi: 10.1039/D0SC00809E. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
22. Saginala K, Barsouk A, Aluru JS, et al. Epidemiology of bladder cancer. Med Sci (Basel) 2020;8(1):15. [PMC free article] [PubMed] [Google Scholar]
23. Tatsugami K, Kuroiwa K, Kamoto T, et al. Evaluation of narrow-band imaging as a complementary method for the detection of bladder cancer. J Endourol. 2010;24(11):1807–1811. doi: 10.1089/end.2010.0055. [PubMed] [CrossRef] [Google Scholar]
24. Soubra A, Risk MC. Diagnostics techniques in nonmuscle invasive bladder cancer. Indian J Urol. 2015;31(4):283–288. doi: 10.4103/0970-1591.166449. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
25. Lee CS, Yoon CY, Witjes JA. The past, present and future of cystoscopy: The fusion of cystoscopy and novel imaging technology. BJU Int. 2008;102(9 Pt B):1228–1233. [PubMed] [Google Scholar]
26. Yafi FA, Brimo F, Steinberg J, et al. Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer. Urol Oncol. 2015;33(2):66. [PubMed] [Google Scholar]
27. Chakraborty A, Dasari S, Long W, et al. Urine protein biomar-kers for the detection, surveillance, and treatment response prediction of bladder cancer. Am J Cancer Res. 2019;9(6):1104–1117. [PMC free article] [PubMed] [Google Scholar]
28. Chou R, Gore JL, Buckley D, et al. Urinary biomarkers for diagnosis of bladder cancer: A systematic review and meta-analysis. Ann Intern Med. 2015;163(12):922–931. doi: 10.7326/M15-0997. [PubMed] [CrossRef] [Google Scholar]
29. Wang Z, Que H, Suo C, et al. Evaluation of the NMP22 BladderChek test for detecting bladder cancer: A systematic review and meta-analysis. Oncotarget. 2017;8(59):100648–100656. doi: 10.18632/oncotarget.22065. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
30. He H, Han C, Hao L, et al. ImmunoCyt test compared to cytology in the diagnosis of bladder cancer: A meta-analysis. Oncol Lett. 2016;12(1):83–88. doi: 10.3892/ol.2016.4556. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
31. Stone N, Kendall C, Shepherd N, et al. Near-infrared Raman spectroscopy for the classification of epithelial pre-cancers and cancers. J Raman Spectrosc. 2002;33(7):564–573. doi: 10.1002/jrs.882. [CrossRef] [Google Scholar]
32. Crow P, Uff J, Farmer JA, et al. The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro. BJU Int. 2004;93(9):1232–1236. doi: 10.1111/j.1464-410X.2004.04852.x. [PubMed] [CrossRef] [Google Scholar]
33. de Jong B, Bakker Schut T, Maquelin K, et al. Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy. Anal Chem. 2006;78(22):7761–7769. doi: 10.1021/ac061417b. [PubMed] [CrossRef] [Google Scholar]
34. Draga RO, Grimbergen MC, Vijverberg PL, et al. In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal Chem. 2010;82(14):5993–5999. doi: 10.1021/ac100448p. [PubMed] [CrossRef] [Google Scholar]
35. Zhang P, Zhang Y, Liu W, et al. A molecular beacon based surface-enhanced Raman scattering nanotag for noninvasive diagnosis of bladder cancer. J Biomed Nanotechnol. 2019;15(7):1589–1597. doi: 10.1166/jbn.2019.2780. [PubMed] [CrossRef] [Google Scholar]
36. Hu D, Xu X, Zhao Z, et al. Detecting urine metabolites of bladder cancer by surface-enhanced Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2021;247:119108. doi: 10.1016/j.saa.2020.119108. [PubMed] [CrossRef] [Google Scholar]
37. Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European Asso-ciation of Urology guidelines on renal cell carcinoma: The 2022 Update[J/OL]. Eur Urol, 2022. doi: 10.1016/j.eururo.2022.03.006.
38. Volpe A, Kachura JR, Geddie WR, et al. Techniques, safety and accuracy of sampling of renal tumors by fine needle aspiration and core biopsy. J Urol. 2007;178(2):379–386. doi: 10.1016/j.juro.2007.03.131. [PubMed] [CrossRef] [Google Scholar]
39. Haifler M, Kutikov A. Update on renal mass biopsy. Curr Urol Rep. 2017;18(4):28. doi: 10.1007/s11934-017-0674-y. [PubMed] [CrossRef] [Google Scholar]
40. Zhu D, Cao J, Zhi C, et al. Prognostic significance of the sub-classification of stage pT3a renal tumors by perinephric and sinus fat invasion. Oncol Lett. 2020;19(3):1721–1726. [PMC free article] [PubMed] [Google Scholar]
41. Wills H, Kast R, Stewart C, et al. Diagnosis of Wilms' tumor using near-infrared Raman spectroscopy. J Pediatr Surg. 2009;44(6):1152–1158. doi: 10.1016/j.jpedsurg.2009.02.041. [PubMed] [CrossRef] [Google Scholar]
42. Couapel JP, Senhadji L, Rioux-Leclercq N, et al. Optical spectroscopy techniques can accurately distinguish benign and malignant renal tumours. BJU Int. 2013;111(6):865–871. doi: 10.1111/j.1464-410X.2012.11369.x. [PubMed] [CrossRef] [Google Scholar]
43. Haifler M, Pence I, Sun Y, et al. Discrimination of malignant and normal kidney tissue with short wave infrared dispersive Raman spectroscopy. J Biophotonics. 2018;11(6):e201700188. doi: 10.1002/jbio.201700188. [PubMed] [CrossRef] [Google Scholar]
44. Mert S, Özbek E, Ötünçtemur A, et al. Kidney tumor staging using surface-enhanced Raman scattering. J Biomed Opt. 2015;20(4):047002. doi: 10.1117/1.JBO.20.4.047002. [PubMed] [CrossRef] [Google Scholar]
45. Bjurlin MA, Wysock JS, Taneja SS. Optimization of prostate bio-psy: Review of technique and complications. Urol Clin North Am. 2014;41(2):299–313. doi: 10.1016/j.ucl.2014.01.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
46. Duffy MJ. Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin Chem Lab Med. 2020;58(3):326–339. doi: 10.1515/cclm-2019-0693. [PubMed] [CrossRef] [Google Scholar]
47. Crow P, Stone N, Kendall CA, et al. The use of Raman spectroscopy to identify and grade prostatic adenocarcinoma in vitro. Br J Cancer. 2003;89(1):106–108. doi: 10.1038/sj.bjc.6601059. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
48. Crow P, Barrass B, Kendall C, et al. The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines. Br J Cancer. 2005;92(12):2166–2170. doi: 10.1038/sj.bjc.6602638. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
49. Tollefson M, Magera J, Sebo T, et al. Raman spectral imaging of prostate cancer: Can Raman molecular imaging be used to augment standard histopathology? BJU Int. 2010;106(4):484–488. doi: 10.1111/j.1464-410X.2010.09185.x. [PubMed] [CrossRef] [Google Scholar]
50. Li S, Zhang Y, Xu J, et al. Noninvasive prostate cancer screening based on serum surface-enhanced Raman spectroscopy and support vector machine. Applied Physics Letters. 2014;105(9):091104. doi: 10.1063/1.4892667. [CrossRef] [Google Scholar]
51. Chen N, Rong M, Shao X, et al. Surface-enhanced Raman spectroscopy of serum accurately detects prostate cancer in patients with prostate-specific antigen levels of 4-10 ng/mL. Int J Nanomedicine. 2017;12:5399–5407. doi: 10.2147/IJN.S137756. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
52. Gao R, Lv Z, Mao Y, et al. SERS-based pump-free microfluidic chip for highly sensitive immunoassay of prostate-specific antigen biomarkers. ACS Sens. 2019;4(4):938–943. doi: 10.1021/acssensors.9b00039. [PubMed] [CrossRef] [Google Scholar]
53. Dong S, Wang Y, Liu Z, et al. Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma. ACS Appl Mater Interfaces. 2020;12(4):5136–5146. doi: 10.1021/acsami.9b21333. [PubMed] [CrossRef] [Google Scholar]
54. Cui X, Liu T, Xu X, et al. Label-free detection of multiple genitourinary cancers from urine by surface-enhanced Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2020;240:118543. doi: 10.1016/j.saa.2020.118543. [PubMed] [CrossRef] [Google Scholar]
55. Del Mistro G, Cervo S, Mansutti E, et al. Surface-enhanced Raman spectroscopy of urine for prostate cancer detection: A preliminary study. Anal Bioanal Chem. 2015;407(12):3271–3275. doi: 10.1007/s00216-015-8610-9. [PubMed] [CrossRef] [Google Scholar]
不感兴趣
看过了
取消
不感兴趣
看过了
取消
精彩评论
相关阅读