申请认证 退出

您的申请提交成功

确定 取消

ChatGPT/LLM在医疗行业的优劣势分析与应用

2023-02-13 15:53   左手医生

健康干预是一系列应用模块组合而成,需要及时获取患者当前状态,借助风险评估,给出患者药物、饮食、运动等指导。

看到LLM如此出色的表现,那么不禁去思考,在医疗上LLM/ChatGPT具体都能做什么呢?

先从医疗侧入手,我们先看医疗对AI(NLP)技术的需求,归纳一下,可以分为两类:

1、重复性劳动(效率提升),如数据处理、文书撰写,文档质控,患教随访等等;

2、适当场景提醒(能力提升),如辅助诊断、风险评估等等;

在医生侧,AI技术可以将医生从大量重复性劳动中解放出来,让医生有更多时间来完成高质量高价值的医疗决策,同时AI医生可以在适当的诊疗节点,给予医生更新更细粒度的医学知识支持,提升决策质量。

在患者侧,AI技术可以极大改善医疗服务的时间、空间可及性,解决医疗资源的不平衡,提高医疗服务的效率和质量。

一、LLM在医疗中完成较好的任务

1、文书工作

虽然目前的LLM还不具备在底层逻辑上对于医疗知识的理解,但已经可以针对性的完成医疗文本的处理任务,对于医疗文书的有约束性归纳总结,而且海量的训练数据规模,以及逐渐显现的泛化/推理能力,使得即使在面对从未见过的文本数据,大模型依然有相当出色的处理效果。这就使得在医生输入特定信息的简要说明、需详细说明的概念和要解释的医嘱后,可以节约大量花在医疗文档书写的时间。

2、信息抽取类

更大规模的LLM模型在表达字、词和句子间的语义关系方面的能力得到了显著的提升,所以对于实体识别、关系抽取、事件抽取这类传统NLP任务有较高的准确度,可以很好的完成医疗文本结构化等任务,从而支撑科研数据构建、结构化搜索、医疗文书质控、DRG控费、医疗数据统计分析等应用场景。

左医的听译机器人早期版本,还是借助pattern & 知识图谱matching等技术,从医患对话中提取有效字段。借助LLM及prompt,不仅有效的针对已知schema提升抽取质量,同时,只要标注少量的案例,也可以达到对新增schema带来经验的抽取效果。

3、医疗Bot及患者服务

在人机沟通上,一方面LLM更长的序列长度可以容纳更多的对话上下文,另一方面借助真实优质的医患对话及患者反馈,也可以打造既能符合医疗习惯,又能理解患者通俗语言的拟人化医疗Chatbot。

在患者服务层面,借助LLM对海量文献的归纳总结,无需再针对性构建患教知识库,即可针对患者的提问给出合理的解答,在此过程中,根据患者的反馈行为持续增强学习。

二、LLM在医疗中现阶段较难完成的任务

在生成任务上,LLM擅长对现有知识的归纳总结,但是当要解决的问题所依赖的数据存在缺失、低质量甚至误导信息时,它就会变得一本正经的胡说八道。

而在医疗领域,这一问题会成为应用落地的瓶颈,特别是在医疗的专科专病细分领域,获取高质且大量的医疗数据无疑是非常困难:

1、辅助诊断及治疗建议

网友测试ChatGPT也可以发现,ChatGPT可以针对一些常见病的病情给出诊断及用药方案。其原理,也是LLM在阅读大量网络文章时,基于文章中的上下文构建出诊断&治疗建议的关联关系。但在实际场景中,患者病情的复杂程度以及不同患者之间细微的差异,对于现阶段LLM的推理能力都是非常大的挑战。

2、风险评估

时间序列数据的缺失,以及风险因素来源与多篇研究文档,现有的LLM去跨多文档理解可能需要更深度的训练和更大的参数。

3、健康干预

健康干预是一系列应用模块组合而成,需要及时获取患者当前状态,借助风险评估,给出患者药物、饮食、运动等指导。对于LLM这种生成模型来讲,如果表达患者完整的病情信息,以及根据患者的病情变化实时给出有效的干预方案依然困难。

不感兴趣

看过了

取消

风险评估,LLM,药物,饮食

不感兴趣

看过了

取消

相关阅读

赞+1

您的申请提交成功

您的申请提交成功

确定 取消
海报

已收到您的咨询诉求 我们会尽快联系您

添加微信客服 快速领取解决方案 您还可以去留言您想解决的问题
去留言
立即提交