从中枢镇痛角度提供手法治疗颈椎病的疗效证据,从而系统阐释不同类型手法治疗颈椎病的中枢镇痛机制,丰富手法的科学内涵,客观评价不同类型手法临床疗效。
本文来源
颈椎病是常见的脊柱退行性疾病,流行病学调查显示,全球有超过三分之一的人出现过持续至少3个月的颈部疼痛症状,且颈椎病伴慢性颈痛为25~64岁人群致残的主要原因之一。
手法治疗是治疗颈椎病的临床常用方法之一,有研究表明手法治疗在改善颈椎病患者疼痛方面疗效显著,但其具体机制尚不明确。随着神经影像学技术的日益发展,基于功能神经影像学的颈椎病研究数量呈逐年递增趋势,尤其是从中枢角度研究干预措施的镇痛机制逐渐受到关注,这为探索手法治疗颈椎病的中枢镇痛机制提供了新思路。本文系统梳理了近10年来国内外相关文献研究结果,探讨现有研究的局限性,以期为后续研究提供方向。
要 点
1.手法治疗可通过加强中枢门控作用调节感觉运动整合过程的方式来达到镇痛效果;
2.手法治疗可通过增强默认模式网络中感觉皮质和执行功能皮质的连接强度加快局部神经重塑,进而减弱负性记忆、情绪相关区域之间的白质纤维连接的方式来达到镇痛效果;
3.手法治疗可通过调节交感神经功能,恢复脑疼痛抑制机制和中枢敏化作用的方式来达到镇痛效果。
手法治疗可调控大脑区域活动
SPARKS等研究发现血氧水平依赖性信号(BOLD)降低与疼痛刺激强度主观评分之间存在线性关系,SPARKS及其团队在此基础上通过功能成像研究24例颈椎病患者时,发现患者小脑、杏仁核、丘脑、岛叶、中央前回等区域在应对机械性刺激疼痛时有明显激活反应;在进行胸椎关节松动手法操作后,发现患者的岛叶皮质中对有害机械刺激做出反应的相关激活区域减少。根据上述研究结果可推知,手法治疗颈椎病及其慢性疼痛的机制可能在于其可降低患者的脑区激活程度,抑制脑结构间刺激信号的传递。
WEBER等以神经疼痛信号(NPS)为客观指标,观测到经胸椎关节松动手法操作后,患者NPS激活程度降低,其中以次级体感皮质、前扣带皮质、枕叶复合体激活减少最为明显,进一步证实关节松动手法操作可能会改变涉及颈椎病疼痛的相关脑区内的大脑活动情况,从而达到镇痛作用。
HAAVIK等研究表明,关节松动手法操作的脊柱指压治疗对于颈椎病疼痛所致的感觉运动整合障碍调控在于干预中枢整合阶段,其中聚焦了额叶N30(P22-N30复合物)的电位变化,手法干预12周后的SEP比率幅度下降主要表现在该区域的中央后回,且与基底节、丘脑也具备关联性,关节松动手法操作加强了中枢的门控作用,过滤传入的异常信号,从而调节该区域的感觉运动整合过程。
DALIGADU等研究了颈椎节段的脊柱指压手法操作对于颈椎病患者小脑区域活动的影响,采用小脑抑制指数(CBI)作为客观指标,观测到进行手法操作干预后,CBI呈下降趋势,证实关节松动手法操作可改善小脑对运动皮质的抑制,介导颈椎病发生时小脑内部模型的过度活跃,从而恢复原有的小脑感觉运动整合和运动输出过程。
因此,手法治疗可调控颈椎病疼痛相关的大脑区域活动,加强中枢门控作用,调节感觉运动整合过程,从而实现镇痛作用。
手法治疗可改变脑默认模式网络(DMN)
有研究证实,通过使用软组织放松的手法治疗能增强DMN中感觉皮质和执行功能皮质的连接强度,从而达到减轻颈椎病疼痛、感觉异常、功能障碍的效果。
张华等在后续进行的一系列纵向研究中发现:(1)经颈肩部软组织放松类手法联合颈椎拔伸的关节松动手法治疗后中脑导水管周围灰质与丘脑之间的联系加强。研究认为手法治疗作用机制可能是手法操作产生的外来激活信息与颈椎病疼痛的外周水平伤害性信息在脑导水管周围灰质汇聚,经复杂的中枢加工整合后,外周水平伤害性信息的上行传导受到抑制,从而达到手法操作的镇痛效应。(2)颈椎病患者大脑左侧扣带海马束部分的各向异性分数(FA)发生变化。经手法治疗的患者左侧扣带海马束FA相对较高,说明颈椎病及其慢性疼痛对患者脑白质纤维产生改变,从而改变了DMN的连接功能,使得负性记忆、情绪相关区域白质纤维连接增强;手法治疗后,相同区域内连续6个位点FA均呈降低水平,从微观结构层面验证了颈肩部软组织放松类手法为主,联合颈椎拔伸的关节松动手法可加快局部神经重塑,减弱负性记忆、情绪相关区域之间的白质纤维连接,从而达到治疗效果。
软组织放松手法为主的调节颈椎病患者默认模式网络镇痛机制详细流程见图1。
手法治疗可调节交感神经活动
GALAASEN BAKKEN等发现,关节松动手法的脊柱指压治疗作用机制可能在于通过恢复心率变异性(HRV)水平从而介导交感神经活动,同时调节条件性疼痛调节水平(CPM),最终达到镇痛作用。
OGURA等测定唾液淀粉酶含量作为交感神经变化的指示物,结果显示进行脊柱指压治疗后唾液淀粉酶含量明显降低,提示此类关节松动手法能激活交感神经,缓解疼痛。
针对颈部节段的关节松动手法可能通过诱导一种类似于生物反馈的机制进而实现躯体放松,并通过调控交感神经功能,恢复脑疼痛抑制机制和中枢敏化作用,最终达到镇痛效果。具体流程机制见图2。
总结展望
随着神经影像学的发展,颈椎病患者的脑结构、脑功能、神经功能改变初步可视化得以实现,为手法治疗颈椎病中枢镇痛机制研究奠定基础,颈椎病患者脑结构、脑功能网络连接改变情况详见表1,不同类型手法治疗颈椎病的中枢镇痛机制见表2。
由于存在人群选择、手法操作类型及研究手段的差异,目前国内外研究均存在一定局限性:
(1)研究机制前缺乏不同类型手法操作的量化研究,会影响疗效机制研究。
(2)未充分考虑研究人群代表性,可能会导致偏倚。
(3)目前许多研究主要关注颈椎病慢性期阶段。
(4)大部分研究多为单时态研究,缺乏更多时间节点的观察指标。
针对以上问题,未来开展手法治疗颈椎病的中枢机制研究需要关注三方面内容:
(1)试验设计循序渐进,开展不同类型手法的量化研究,分类探究手法中枢镇痛机制,在已有实验结果的基础上深入寻找变量进行设计,重视手法质量控制,选取公认的、具备临床价值的评价指标,为揭示不同类型手法治疗颈椎病的中枢镇痛机制提供证据;
(2)结合临床实际,研究中注重研究人群的广泛性,分类探索手法治疗对疾病不同阶段的影响;
(3)不局限于手法操作对颈椎病患者脑结构的单一时态变化,更多关注大脑功能网络连接的动态改变,设置更多观察节点,从中枢镇痛角度提供手法治疗颈椎病的疗效证据,从而系统阐释不同类型手法治疗颈椎病的中枢镇痛机制,丰富手法的科学内涵,客观评价不同类型手法临床疗效。
参考文献[1] THEODORE N. Degenerative cervical spondylosis[J]. N Engl J Med,2020,383(2):159-168.
[2] BINDER A I. Cervical spondylosis and neck pain[J]. BMJ,2007,334(7592):527-531.
[3] MURRAY C J L,VOS T,LOZANO R,et al. Disability-adjusted life years(DALYs)for 291 diseases and injuries in 21 regions,1990-2010:a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet,2012,380(9859):2197-2223.
[4] HURWITZ E L,RANDHAWA K,YU H N,et al. The Global Spine Care Initiative:a summary of the global burden of low back and neck pain studies[J]. Eur Spine J,2018,27(Suppl 6):796-801.
[5] CHILDRESS M A,BECKER B A. Nonoperative management of cervical radiculopathy[J]. Am Fam Physician,2016,93(9):746-754.
[6] RAO R D,CURRIER B L,ALBERT T J,et al. Degenerative cervical spondylosis:clinical syndromes,pathogenesis,and management[J]. Instr Course Lect,2008,57:447-469.
[7] ZHU L G,WEI X,WANG S Q. Does cervical spine manipulation reduce pain in people with degenerative cervical radiculopathy? A systematic review of the evidence,and a meta-analysis[J]. Clin Rehabil,2016,30(2):145-155.
[8] 魏戌,王旭,孙凯,等. 中医手法治疗颈椎病的研究现状与展望[J]. 中华中医药杂志,2020,35(10):4781-4784.
[9] WANG C C,HOLLY L T,OUGHOURLIAN T,et al. Detection of cerebral reorganization associated with degenerative cervical myelopathy using diffusion spectral imaging(DSI)[J]. J Clin Neurosci,2021,86:164-173.
[10] FREUND P,WEISKOPF N,WARD N S,et al. Disability,atrophy and cortical reorganization following spinal cord injury[J]. Brain,2011,134(Pt 6):1610-1622.
[11] FISCHL B. Free Surfer[J]. Neuroimage,2012,62(2):774-781.
[12] DE PAUW R,COPPIETERS I,CAEYENBERGHS K,et al. Associations between brain morphology and motor performance in chronic neck pain:a whole-brain surface-based morphometry approach[J]. Hum Brain Mapp,2019,40(14):4266-4278.
[13] SPARKS C,CLELAND J A,ELLIOTT J M,et al. Using functional magnetic resonance imaging to determine if cerebral hemodynamic responses to pain change following thoracic spine thrust manipulation in healthy individuals[J]. J Orthop Sports Phys Ther,2013,43(5):340-348.
[14] SPARKS C,CLELAND J A,ELLIOTT J M,et al. Supraspinal structures may be associated with hypoalgesia following thrust manipulation to the spine:a review of the literature[J]. Phys Ther Rev,2013,18(2):112-116.
[15] STARR C J,SAWAKI L,WITTENBERG G F,et al. Roles of the insular cortex in the modulation of pain:insights from brain lesions[J]. J Neurosci,2009,29(9):2684-2694.
[16] SPARKS C,LIU W C,CLELAND J A,et al. Functional magnetic resonance imaging of cerebral hemodynamic responses to pain following thoracic thrust manipulation in individuals with neck pain:a randomized trial[J]. J Manipulative Physiol Ther,2017,40(9):625-634.
[17] WAGER T D,ATLAS L Y,LINDQUIST M A,et al. An fMRI-based neurologic signature of physical pain[J]. N Engl J Med,2013,368(15):1388-1397.
[18] WEBER II K A,WAGER T D,MACKEY S,et al. Evidence for decreased Neurologic Pain Signature activation following thoracic spinal manipulation in healthy volunteers and participants with neck pain[J]. Neuroimage Clin,2019,24:102042.
[19] TINAZZI M,PRIORI A,BERTOLASI L,et al. Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow[J]. Brain,2000,123(Pt 1):42-50.
[20] HSIEH C L,SHIMA F,TOBIMATSU S,et al. The interaction of the somatosensory evoked potentials to simultaneous finger stimuli in the human central nervous system. A study using direct recordings[J]. Electroencephalogr Clin Neurophysiol,1995,96(2):135-142.
[21] HAAVIK H,NIAZI I K,HOLT K,et al. Effects of 12 weeks of chiropractic care on central integration of dual somatosensory input in chronic pain patients:a preliminary study[J]. J Manipulative Physiol Ther,2017,40(3):127-138.
[22] APPS R,GARWICZ M. Anatomical and physiological foundations of cerebellar information processing[J]. Nat Rev Neurosci,2005,6(4):297-311.
[23] MANZONI D. The cerebellum may implement the appropriate coupling of sensory inputs and motor responses:evidence from vestibular physiology[J]. Cerebellum,2005,4(3):178-188.
[24] MANZONI D. The cerebellum and sensorimotor coupling:looking at the problem from the perspective of vestibular reflexes[J]. Cerebellum,2007,6(1):24-37.
[25] DOYON J,PENHUNE V,UNGERLEIDER L G. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning[J]. Neuropsychologia,2003,41(3):252-262.
[26] DOYON J,SONG A W,KARNI A,et al. Experience-dependent changes in cerebellar contributions to motor sequence learning[J]. Proc Natl Acad Sci USA,2002,99(2):1017-1022.
[27] HAAVIK H,MURPHY B. The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control[J]. J Electromyogr Kinesiol,2012,22(5):768-776.
[28] DALIGADU J,HAAVIK H,YIELDER P C,et al. Alterations in cortical and cerebellar motor processing in subclinical neck pain patients following spinal manipulation[J]. J Manipulative Physiol Ther,2013,36(8):527-537.
[29] TAN Y M,ZHOU F Q,WU L,et al. Alteration of regional homogeneity within the sensorimotor network after spinal cord decompression in cervical spondylotic myelopathy:a resting-state fMRI study[J]. Biomed Res Int,2015,2015:647958.
[30] ZHOU F Q,GONG H H,LIU X J,et al. Increased low-frequency oscillation amplitude of sensorimotor cortex associated with the severity of structural impairment in cervical myelopathy[J]. PLoS One,2014,9(8):e104442.
[31] RAICHLE M E. The brain's default mode network[J]. Annu Rev Neurosci,2015,38:433-447.
[32] 张华,王昊,李多多,等. 颈椎病慢性疼痛患者的默认网络研究[J]. 中国康复理论与实践,2015,21(1):69-73.
[33] 张华,王昊,李多多,等. 中医推拿对颈椎病慢性疼痛患者静息态脑功能默认网络的影响[J]. 北京中医药大学学报,2014,37(12):845-850.
[34] 王昊,左伟斌,张慧,等. 推拿对慢性神经根型颈椎病疼痛相关脑区的影响[J]. 中国中医基础医学杂志,2017,23(6):854-857,860.
[35] 刘钰,陈红,王昊,等. 推拿对颈椎病疼痛患者脑白质微观结构影响[J]. 辽宁中医药大学学报,2021,23(2):167-171.
[36] BENARROCH E E. Pain-autonomic interactions[J]. Neurol Sci,2006,27(Suppl 2):S130-133.
[37] NIJS J,VAN HOUDENHOVE B,OOSTENDORP R A B. Recognition of central sensitization in patients with musculoskeletal pain:application of pain neurophysiology in manual therapy practice[J]. Man Ther,2010,15(2):135-141.
[38] HALLMAN D M,OLSSON E M,VON SCHÉELE B,et al. Effects of heart rate variability biofeedback in subjects with stress-related chronic neck pain:a pilot study[J]. Appl Psychophysiol Biofeedback,2011,36(2):71-80.
[39] BIALOSKY J E,BISHOP M D,PRICE D D,et al. The mechanisms of manual therapy in the treatment of musculoskeletal pain:a comprehensive model[J]. Man Ther,2009,14(5):531-538.
[40] PERRY J,GREEN A,SINGH S,et al. A preliminary investigation into the magnitude of effect of lumbar extension exercises and a segmental rotatory manipulation on sympathetic nervous system activity[J]. Man Ther,2011,16(2):190-195.
[41] MOUTZOURI M,PERRY J,JOANNA P,et al. Investigation of the effects of a centrally applied lumbar sustained natural apophyseal glide mobilization on lower limb sympathetic nervous system activity in asymptomatic subjects[J]. J Manipulative Physiol Ther,2012,35(4):286-294.
[42] BIALOSKY J E,BISHOP M D,ROBINSON M E,et al. Spinal manipulative therapy has an immediate effect on thermal pain sensitivity in people with low back pain:a randomized controlled trial[J]. Phys Ther,2009,89(12):1292-1303.
[43] FARINATTI P T V,BRANDÃO C,SOARES P P S,et al. Acute effects of stretching exercise on the heart rate variability in subjects with low flexibility levels[J]. J Strength Cond Res,2011,25(6):1579-1585.
[44] MUECK-WEYMANN M,JANSHOFF G,MUECK H. Stretching increases heart rate variability in healthy Athletes complaining about limited muscular flexibility[J]. Clin Auton Res,2004,14(1):15-18.
[45] GALAASEN BAKKEN A,AXÉN I,EKLUND A,et al. The effect of spinal manipulative therapy on heart rate variability and pain in patients with chronic neck pain:a randomized controlled trial[J]. Trials,2019,20(1):590.
[46] NATER U M,ROHLEDER N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system:current state of research[J]. Psychoneuroendocrinology,2009,34(4):486-496.
[47] OGURA T,TASHIRO M,MASUD M,et al. Cerebral metabolic changes in men after chiropractic spinal manipulation for neck pain[J]. Altern Ther Health Med,2011,17(6):12-17.
[48] INAMI A,OGURA T,WATANUKI S,et al. Glucose metabolic changes in the brain and muscles of patients with nonspecific neck pain treated by spinal manipulation therapy:a[18F]FDG PET study[J]. Evid Based Complement Alternat Med,2017,2017:4345703.
[49] OTTE A,HALSBAND U. Brain imaging tools in neurosciences[J]. J Physiol Paris,2006,99(4/5/6):281-292.
[50] SESTINI S. The neural basis of functional neuroimaging signal with positron and single-photon emission tomography[J]. Cell Mol Life Sci,2007,64(14):1778-1784.
[51] WINTERMARK M,SESAY M,BARBIER E,et al. Comparative overview of brain perfusion imaging techniques[J]. Stroke,2005,36(9):e83-99.
[52] PLOGHAUS A,TRACEY I,CLARE S,et al. Learning about pain:the neural substrate of the prediction error for aversive events[J]. Proc Natl Acad Sci USA,2000,97(16):9281-9286.
[53] SACCHETTI B,SCELFO B,STRATA P. Cerebellum and emotional behavior[J]. Neuroscience,2009,162(3):756-762.
[54] SHENHAV A,COHEN J D,BOTVINICK M M. Dorsal anterior cingulate cortex and the value of control[J]. Nat Neurosci,2016,19(10):1286-1291.
[55] TRACEY I. Getting the pain You expect:mechanisms of placebo,nocebo and reappraisal effects in humans[J]. Nat Med,2010,16(11):1277-1283.
[56] LINDGREN L,WESTLING G,BRULIN C,et al. Pleasant human touch is represented in pregenual anterior cingulate cortex[J]. Neuroimage,2012,59(4):3427-3432.
[57] CRITCHLEY H D,MELMED R N,FEATHERSTONE E,et al. Brain activity during biofeedback relaxation:a functional neuroimaging investigation[J]. Brain,2001,124(Pt 5):1003-1012.
[58] 梁龙,于杰,魏戌,等. 基于筋束骨理论建立慢性劳损型上颈椎失稳尸体模型及评价[J]. 中国组织工程研究,2020,24(20):3152-3156.
[59] 魏戌,朱立国,高景华,等. 旋提手法对椎动脉型颈椎病患者经颅多普勒相关指标的影响[J]. 中医杂志,2017,58(18):1573-1576.
[60] HAAVIK H,MURPHY B. Cervical spine manipulation alters sensorimotor integration:a somatosensory evoked potential study[J]. Clin Neurophysiol,2007,118(2):391-402.
[61] NAEGEL S,HOLLE D,DESMARATTES N,et al. Cortical plasticity in episodic and chronic cluster headache[J]. Neuroimage Clin,2014,6:415-423.
[62] HAAVIK H,MURPHY B. Subclinical neck pain and the effects of cervical manipulation on elbow joint position sense[J]. J Manipulative Physiol Ther,2011,34(2):88-97.
[63] 魏戌,韩涛,孙凯,等. 中医药防治骨与关节退行性疾病的优势、关键问题及研究策略[J]. 中国全科医学,2021,24(35):4421-4426.
END
不感兴趣
看过了
取消
人点赞
人收藏
打赏
不感兴趣
看过了
取消
您已认证成功,可享专属会员优惠,买1年送3个月!
开通会员,资料、课程、直播、报告等海量内容免费看!
打赏金额
认可我就打赏我~
1元 5元 10元 20元 50元 其它打赏作者
认可我就打赏我~
扫描二维码
立即打赏给Ta吧!
温馨提示:仅支持微信支付!
已收到您的咨询诉求 我们会尽快联系您