利用电子健康记录中的共病特征筛查特发性肺纤维化
SCI
18 October 2022
Screening for idiopathic pulmonary fibrosis using comorbidity signatures in electronic health records
(nature medicine, IF:50.768)
Dmytro Onishchenko, Robert J. Marlowe, Che G. Ngufor, Louis J. Faust, Andrew H. Limper, Gary M. Hunninghake, Fernando J. Martinez and Ishanu Chattopadhyay
CORRESPONDENCE TO: ishanu@uchicago.edu
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal fibrosing interstitial lung disease with a mean survival time of less than 5 years. Nonspecific presentation, a lack of effective early screening tools, unclear pathobiology of early-stage IPF and the need for invasive and expensive procedures for diagnostic confirmation hinder early diagnosis. In this study, we introduce a new screening tool for IPF in primary care settings that requires no new laboratory tests and does not require recognition of early symptoms. Using subtle comorbidity signatures identified from the history of medical encounters of individuals, we developed an algorithm, called the zero-burden comorbidity risk score for IPF (ZCoR-IPF), to predict the future risk of an IPF diagnosis. ZCoR-IPF was trained on a national insurance claims database and validated on three independent databases, comprising a total of 2,983,215 participants, with 54,247 positive cases. The algorithm achieved positive likelihood ratios greater than 30 at a specificity of 0.99 across different cohorts, for both sexes, and for participants with different risk states and history of confounding diseases. The area under the receiver-operating characteristic curve for ZCoR-IPF in predicting IPF exceeded 0.88 and was approximately 0.84 at 1 and 4 years before a conventional diagnosis, respectively. Thus, if adopted, ZCoR-IPF can potentially enable earlier diagnosis of IPF and improve outcomes of disease-modifying therapies and other interventions.
特发性肺纤维化(IPF)是一种致命的纤维化性间质性肺疾病,平均生存时间少于5年。非特异性表现、缺乏有效的早期筛查工具、早期IPF的病理生物学不明确以及需要侵入性和昂贵的诊断确认程序阻碍IPF的早期诊断。本研究在初级保健机构中引入了一种新的IPF筛查工具,不需要新的实验室检测,也不需要识别早期症状。利用既往病史中识别出的细微共病特征,我们开发了一种算法,称为IPF的零负担共病风险评分(ZCoR-IPF)来预测IPF。ZCoR-IPF学习了国家保险索赔数据库的数据,并在三个独立数据库上进行了验证,共2983215名参与者,其中54247名为阳性。该算法在不同的队列中,无论男女,或具有不同风险状态,混杂既往史的参与者中,获得了大于30的阳性似然比,特异性为0.99。使用ZCoR-IPF预测IPF时,在常规诊断前1年和4年ROC曲线下面积分别为超过0.88和大约为0.84。因此,如果采用ZCoR-IPF,有望实现IPF的早期诊断,并改善疾病改良疗法和其他干预措施的结果。
不感兴趣
看过了
取消
不感兴趣
看过了
取消
精彩评论
相关阅读