抢先看!中国心血管医疗器械产业创新白皮书诊断篇节选内容发布

2021
11/24

+
分享
评论
CCI心血管医生创新俱乐部
A-
A+

创新引领,研究先行。 

创新引领,研究先行。

系统的行业研究对于实现更有效创新,洞悉创新趋势,找准创新突破点至关重要。

为了更好地呈现心血管领域行业发展脉络,引领心血管医疗器械创新动向,由CCI牵头,来自医疗机构、工程院校、器械企业、投资机构等50多家单位的专家共同编撰完成了《2021中国心血管医疗器械产业创新白皮书》,白皮书将于11月18日重磅发布。

内容抢先看!以下为白皮书第三章诊断篇节选内容“影像学检查器械综述”。

3.1.1 影像学检查器械综述

随着新器械的研发和新技术的应用,医学影像学在临床诊断和治疗中日益发挥着不可替代的作用。以冠状动脉CTA(CCTA)、心脏磁共振成像(CMR)和核素心肌显像为代表的心血管成像技术,已成为诊断冠心病、心肌病等不可替代的手段,并在鉴别诊断中发挥着重要作用。此外,近年来以血管内超声(IVUS)、光学相干断层成像(OCT)和血流储备分数(FFR)为代表的冠状动脉腔内影像和 功能生理学得到了长足的发展和广泛的应用。这些影像技术和冠状动脉造影一起,已成为心血管疾病介入治疗的基石。

CCTA作为无创性心血管影像技术的代表,在评估冠状动脉狭窄、识别易损斑 块、指导慢性闭塞(CTO)病变介入治疗以及评估支架植入术后疗效等方面具有一定的优势。由CCTA和FFR结合而来的FFR-CT技术,能够提供可靠的冠状动脉功能学评价[1,2]。基于能量频谱技术,CCTA可对易损斑块进行较为精确的定性和定量分析,在显示斑块组织学特征和功能学特点方面具有相当的潜力[3,4]。在指导CTO 病变介入治疗方面,CCTA可提供闭塞段血管走行的图像信息,帮助介入医师制定具 体的血运重建策略[5]。而基于CCTA 的CT-RECTOR 评分,则比传统的J-CTO 评分具有更好的预测手术成功率的能力[6]。生物可吸收支架(BRS)克服了金属伪影的影 响,CCTA 和FFR-CT 能精准评估BRS 植入后的管腔结构和血流动力学情况[7]。近年来,基于CCTA的管腔内密度衰减梯度(TAG)作为一种反映冠脉血流情况的新指  标得到了较多的关注。联合应用CCTA 和TAG,可显著提高功能性狭窄的诊断效力,可能成为评估冠脉功能性狭窄的可靠指标之一[8,9]。此外,新一代的“Revolution CT” 成像系统,具有更高的空间分辨率(230μm)和时间分辨率(29ms),可在单次心动周期内完成心脏成像,不受患者心率和心律条件的影响,同时放射剂量与对比剂使用量能减至以往的18% 和50%。我们有理由相信,无创CCTA 将在冠心病介入诊疗领域中发挥越来越重要的作用,带动介入心脏病学的快速发展。

CMR以其高时间和空间分辨率、最佳软组织对比度、大视野、无辐射、成像参数多、获得信息量大等优势,在心血管疾病早期诊断、评估病情严重程度、风险和预后等方面具有独特的价值,为心脏、大血管结构测量和功能评估的“金标准”。定量血流灌注技术能精确评价冠心病冠状动脉微血管障碍[10]。磁共振心肌灌注、钆对比剂延迟强化(LGE)及二维血流成像等技术是目前临床广泛使用的无创性评价心肌梗死或纤维瘢痕灶的技术,能够区分心肌病的病因(缺血性、非缺血性心肌病)[11]。LGE能够评价缺血性心肌病梗死或瘢痕组织范围、病变的透壁程度,已成为评价心肌梗死后心肌瘢痕形成的参照标准[12]。此外,一些新技术,如心脏T1、T2 mapping 及DTI 技术实现了对心肌组织T1、T2 值以及水分子扩散运动的定量,在细胞及分子水平反应了心肌微观结构的改变[13]。4D Flow 技术是一种无创的可对心腔及大血管血流进行定性和定量分析的新技术,可同时对3 个相互垂直的维度进行速度编码并获得三位相位对比电影,经1 次扫描即可获得扫面范围内任意位置的血流方向、速度、剪切力等血流动力学参数[14]。CMR具有结构、功能和组织学的“一站式”成像能力,是目前其他影像技术难以比拟的,具有广阔的发展前景。

大量循证医学证据表明,核素心肌显像在冠心病的诊断、危险分层、存活心肌检测、治疗决策制定、疗效评价、预后评估以及其他多种心脏疾病的诊治中具有重要的临床价值。其中,核素心肌灌注显像是诊断冠心病患者心肌缺血准确且循证医学证据最充分的无创性方法;核素心肌葡萄糖代谢显像是目前评价存活心肌的“金标准”。心肌灌注显像分为心肌灌注单光子发射计算机断层显像(SPECT)和心肌灌注正电子发射计算机断层显像(PET)。SPECT 心肌灌注显像是目前最常用的心肌灌注显像方法。PET心肌灌注显像国内开展较少,与SPECT心肌灌注显像相比,后者有更优异的分辨率和完善的图像衰减校正技术,还可进行心肌血流绝对定量,并通过基础和最大充血状态下心肌血流获得心肌血流储备(MFR)和冠状动脉血流储备(CFR)。PET 是目前公认的无创检测CFR的“金标准”。而随着技术的发展,部分SPECT(如D-SPECT)也可实现无创心肌血流定量。

腔内影像技术(IVUS 和OCT)已越来越多地被用于指导冠状动脉介入治疗(PCI)。来自于美国心脏介入的数据显示,自2004 年至2014 年,由腔内影像学指导的PCI 术例数和比例均显著上升,由此带来了患者全因死亡和住院死亡的下降[15]。腔内影像通过帮助术者更高效地识别病变性质、更精确地选择支架尺寸、更及时地发现支架相关并发症(如边缘夹层、扩张不全、贴壁不良或组织脱垂等)、更有效地寻找支架晚期失败的原因(如支架血栓、新生粥样硬化病变、支架断裂、内膜增生等)而改善PCI 预后[16-27]。在一些特殊器械(如BRS)和复杂病变(CTO 病变、左主干病变、分叉病变等)的介入治疗中,腔内影像技术仍将发挥越来越重要的作用。此外,尚有将IVUS 和OCT 整合到一根成像导管上的融合成像技术。2018 年底, 来自加拿大安大略省Hamilton 总医院的几位医生首次报道了IVUS-OCT 融合成像导管在人体的应用[28]。国内也有类似的器械已经开展临床研究。此外,基于IVUS/ OCT的近红外光谱成像(NIRS)也已开始用于临床,指导易损斑块的治疗[29,30]。最近报道称新的OCT系统具有更高的分辨率,可对冠状动脉的单个细胞,甚至是亚细胞结构进行成像,这种OCT 系统被称为显微OCT(Micro OCT)[31]。但这种显微OCT能否用于临床目前还无法确定。

FFR是评估冠状动脉血流的功能学和生理学指标,已成为判断冠脉缺血的“金标准”。目前FFR 的适应证已从稳定性心绞痛扩展至不稳定性心绞痛、非ST 段抬高心梗和ST 段抬高心梗的非罪犯血管,从临界病变扩展至多支病变、弥漫病变、分叉病变和左主干病变[32-37]。在冠脉最大充血状态下通过压力导丝测量Pd/Pa 比值,是经典的获得FFR 的方法。此外,国内尚有通过压力微导管来获得FFR 的方法,其准确性与压力导丝相似[38]。一些非充血的冠状动脉功能生理学评估方法(如iFR、RFR)[39-41] 和基于造影的冠脉功能生理学评估方法(如QFR、caFFR)[42-45] 也在临床上获得了一定的应用。

受价格因素、缺少收费立项和医保覆盖、操作时间长的因素的影响,国内无论腔内影像还是功能生理学的使用比例均偏低。随着医保覆盖逐渐完善、术者对腔内影像和功能生理学逐渐重视,未来介入治疗术中使用腔内影像和功能生理学的比例将明显增加。腔内影像和功能生理学的融合成像也将是未来的发展热点。已有研究者将IVUS/OCT 与FFR结合,通过一次导管回撤,同时获得管腔的形态学信息和功能生理学信息[46-48]。此类融合成像导管可能将成为未来冠脉影像学和功能学检查的主流。展望未来,心血管影像将进入一个快速发展的通道。随着人工智能(AI)的加入,心血管影像已具备了自动识别、自动报告、提供治疗建议等特点,在辅助临床医生决策方面具有了初步优势,使心血管疾病的精准介入治疗成为可能。

参考文献

向上滑动查看

1.Gonzalez JA, Lipinski MJ, Flors L, et al. Meta-analysis of diagnostic performance of coronarycomputed tomography angiography, computed tomography perfusion, and computed tomographyfractional flow reserve in functional myocardial ischemia assessment versus invasive fractional flow reserve. Am J Cardiol. 2015;116:1469-1478.

2.Douglas PS, Pontone G, Hlatky MA, et al. Clinical outcomes of fractional flow reserve by computed tomographic angiography guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease:the prospective longitudinal trial of FFRCT:outcome and resource impacts study. Eur Heart J. 2015;36:3359-3367.

3.Kashiwagi M, Tanaka A, Kitabata H, et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging. 2009;2:1412-1419.

4.Nakazato R,Otake H, Konishi A, et al. Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: a comparison to optical coherence tomography. Eur Heart J Cardiovasc Imaging. 2015;16:373-379.

5.Opolski MP, Achenbach S. CT Angiography for revascularization of CTO: crossing the borders of diagnosis and treatment. JACC Cardiovasc Imaging. 2015;8:846-858.

6.Opolski MP, Achenbach S, Schuhback A, et al. Coronary computed tomographic prediction rule for time-efficient guidewire crossing through chronic total occlusion: insights from the CTRECTOR multicenter registry (Computed Tomography Registry of Chronic Total Occlusion Revascularization). JACC Cardiovasc Interv. 2015;8:257-267.

7.Onuma Y, Dudek D, Thuesen L, et al. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial. JACC Cardiovasc Interv. 2013;6:999-1009.

8.Chatzizisis YS, George E, Cai T, et al. Accuracy and reproducibility of automated, standardized coronary transluminal attenuation gradient measurements. Int J Cardiovasc Imaging. 2014;30:1181-1189.

9.Wong DT, Ko BS, Cameron JD, et al. Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis:a comparison with fractional flow reserve. J Am Coll Cardiol. 2013;61:1271-1279.

10.Zorach B, Shaw PW, Bourque J, et al. Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson. 2018;20:14. Published 2018 Feb 22. doi:10.1186/s12968-018-0435-1

11.Vermes E, Carbone I, Friedrich MG, et al. Patterns of myocardial late enhancement: typical and atypical features. Arch Cardiovasc Dis. 2012;105:300-308.

12.Mayala HA, Bakari KH, Zhaohui W. The role of cardiac magnetic resonance (CMR) in the diagnosis of cardiomyopathy: A systematic review. Malawi Med J. 2018;30:291-295.

13.Moon JC, Messroghli DR, Kellman P, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92.

14.Nayak KS, Nielsen JF, Bernstein MA, et al. Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson. 2015;17(1):71.

15.Smilowitz NR, Mohananey D, Razzouk L, et al. Impact and trends of intravascular imaging in diagnostic coronary angiography and percutaneous coronary intervention in inpatients in the United States. Catheter Cardiovasc Interv. 2018;92:E410-E415.

16.Chieffo A, Latib A, Caussin C, et al. A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions: the AVIO trial. Am Heart J. 2013;165:65-72.

17.Ali ZA, Maehara A, Généreux P, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet. 2016;388:2618-2628.

18.Witzenbichler B, Maehara A, Weisz G, et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the assessment of dual antiplatelet therapy with drug-eluting stents (ADAPT-DES) study. Circulation. 2014;129:463-470.

19.Liu X, Doi H, Maehara A, et al. A volumetric intravascular ultrasound comparison of early drug-eluting stent thrombosis versus restenosis. JACC Cardiovasc Interv. 2009;2:428-434.

20.Fujii K, Carlier SG, Mintz GS, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol. 2005;45:995-998.

21.Kang SJ, Ahn JM, Song H, et al. Comprehensive intravascular ultrasound assessment of stent area and its impact on restenosis and adverse cardiac events in 403 patients with unprotected left main disease. Circ Cardiovasc Interv. 2011;4:562-569.

22.Prati F, Romagnoli E, Burzotta F, et al. Clinical Impact of OCT Findings During PCI: The CLIOPCI II Study. JACC Cardiovasc Imaging. 2015;8:1297-1305.

23.Soeda T, Uemura S, Park SJ, et al. Incidence and Clinical Significance of Poststent Optical Coherence Tomography Findings: One-Year Follow-Up Study From a Multicenter Registry. Circulation. 2015;132:1020-1029.

24.Qiu F, Mintz GS, Witzenbichler B, et al. Prevalence and Clinical Impact of Tissue Protrusion After Stent Implantation: An ADAPT-DES Intravascular Ultrasound Substudy. J Am Coll Cardiol Intv. 2016;9:1499-1507.

25.Im E, Kim BK, Ko YG, et al. Incidences, predictors, and clinical outcomes of acute and late stent malapposition detected by optical coherence tomography after drug-eluting stent implantation. Circ Cardiovasc Interv. 2014;7:88-96.

26.Goto K, Zhao Z, Matsumura M, et al. Mechanisms and Patterns of Intravascular Ultrasound InStent Restenosis Among Bare Metal Stents and First- and Second-Generation Drug-Eluting Stents. Am J Cardiol. 2015;116:1351-1357.

27.Song L, Mintz GS, Yin D, et al. Characteristics of early versus late in-stent restenosis in second-generation drug-eluting stents: an optical coherence tomography study. EuroIntervention. 2017;13:294-302.

28.Sheth TN, Pinilla-Echeverri N, Mehta SR, et al. First-in-Human Images of Coronary Atherosclerosis and Coronary Stents Using a Novel Hybrid Intravascular Ultrasound and Optical Coherence Tomographic Catheter. JACC Cardiovasc Interv. 2018;11:2427-2430.

29.Muller J, Madder R. OCT-NIRS Imaging for Detection of Coronary Plaque Structure and Vulnerability. Front Cardiovasc Med. 2020;7:90.

30.Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet. 2019;394:1629-1637.

31.Nishimiya K, Tearney G. Micro Optical Coherence Tomography for Coronary Imaging. Front Cardiovasc Med. 2021;8:613400.

32.Pijls NH, van Schaardenburgh P, Manoharan G, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol. 2007;49:2105-2111.

33.Pijls NH, Fearon WF, Tonino PA, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year followup of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. J Am Coll Cardiol. 2010;56:177-184.

34.De Bruyne B, Pijls NH, Kalesan B, et al. Fractional flow reserve guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991-1001.

35.Berry C, Layland J, Stood A, et al. Fractional flow reserve versus angiography in guiding management to optimize outcomes in non-ST-elevation myocardial infarction (FAMOUS-NSTEMI): rationale and design of a randomized controlled clinical trial. Am Heart J. 2013;166:662-668.

36.Engstrøm T, Kelbæk H, Helqvist S, et al. Complete revascularization versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3-PRIMULTI): an open-label, randomized controlled trial. Lancet. 2015;386:665-671.

37.Smits PC, Abdel-Wahab M, Neumann FJ, et al. Fractional flow reserve-guided multivessel angioplasty in myocardial infarction. N Engl J Med. 2017;376:1234-1244.

38.Li C, Yang J, Dong S, et al. Multicenter clinical evaluation of a piezoresistive-MEMS-sensor rapid-exchange pressure microcatheter system for fractional flow reserve measurement. Catheter Cardiovasc Interv. 2021;98:E243-E253.

39.Davies JE, Sen S, Dehbi HM, et al. Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI. N Engl J Med. 2017;376:1824-1834.

40.Escaned J, Ryan N, Mejía-Rentería H, et al. Safety of the Deferral of Coronary Revascularization on the Basis of Instantaneous Wave-Free Ratio and Fractional Flow Reserve Measurements in Stable Coronary Artery Disease and Acute Coronary Syndromes. JACC Cardiovasc Interv. 2018;11:1437-1449.

41.Svanerud J, Ahn JM, Jeremias A, et al. Validation of a novel non-hyperaemic index of coronary artery stenosis severity: the Resting Full-cycle Ratio (VALIDATE RFR) study. EuroIntervention. 2018;14:806-814.

42.Tu S, Westra J, Adjedj J, et al. Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation. Eur Heart J. 2020;41:3271-3279.

43.Xu B, Tu S, Qiao S, et al. Diagnostic Accuracy of Angiography-Based Quantitative Flow Ratio Measurements for Online Assessment of Coronary Stenosis. J Am Coll Cardiol. 2017;70:3077-3087.

44.Li J, Gong Y, Wang W, et al. Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR. Cardiovasc Res. 2020;116:1349-1356.

45.Ai H, Zheng N, Li L, et al. Agreement of Angiography-Derived and Wire-Based Fractional Flow Reserves in Percutaneous Coronary Intervention. Front Cardiovasc Med. 2021;8:654392.

46.Tu S, Holm NR, Koning G, Huang Z, Reiber JH. Fusion of 3D QCA and IVUS/OCT. Int J Cardiovasc Imaging. 2011 Feb;27(2):197-207.

47.Pyxaras SA, Adriaenssens T, Barbato E, Ughi GJ, Di Serafino L, De Vroey F, Toth G, Tu S, Reiber JHC, Bax JJ, Wijns W. In-stent fractional flow reserve variations and related optical coherence tomography findings: the FFR-OCT co-registration study. Int J Cardiovasc Imaging. 2018 Apr;34(4):495-502.

48.Seike F, Uetani T, Nishimura K, Kawakami H, Higashi H, Fujii A, Aono J, Nagai T, Inoue K, Suzuki J, Inaba S, Okura T, Yasuda K, Higaki J, Ikeda S. Intravascular Ultrasound-Derived Virtual Fractional Flow Reserve for the Assessment of Myocardial Ischemia. Circ J. 2018 Feb 23;82(3):815-823 

本期策划:沈雳

本文作者:吴轶喆

后期制作:凌武娟 

本文由“健康号”用户上传、授权发布,以上内容(含文字、图片、视频)不代表健康界立场。“健康号”系信息发布平台,仅提供信息存储服务,如有转载、侵权等任何问题,请联系健康界(jkh@hmkx.cn)处理。
关键词:
心肌,病变,血流,成像,功能

人点赞

收藏

人收藏

打赏

打赏

我有话说

0条评论

0/500

评论字数超出限制

表情
评论

为你推荐

推荐课程


社群

精彩视频

您的申请提交成功

确定 取消
剩余5
×

打赏金额

认可我就打赏我~

1元 5元 10元 20元 50元 其它

打赏

打赏作者

认可我就打赏我~

×

扫描二维码

立即打赏给Ta吧!

温馨提示:仅支持微信支付!