Nature|AI可为放宽肿瘤试验入组标准提供循证证据

2021
08/31

+
分享
评论
CDSreport
A-
A+

放宽aNSCLC临床试验入组标准,可将符合入组条件的患者数量增加107%,总生存率风险比下降0.05。

药物临床试验的进展受限于受试者的招募,而过度严格的入组标准是延缓患者注册、降低入组率的关键因素。研究显示,约80%的晚期非小细胞肺癌(aNSCLC)患者不符合临床试验入组标准,导致86%的临床试验未能按时完成招募。 

美国国家癌症研究所(NCI)提出应该考虑放宽入组标准,使临床试验更具代表性。但入组标准限定条件的纳/排仍缺乏能给出足够证据的方法。近期,Nature发表的一项研究显示,利用真实世界数据与AI技术模拟已完成的aNSCLC临床试验,可将符合入组条件的患者数量增加一倍以上,总生存率风险比(HR)平均下降0.05,反映或有更多患者能从治疗中获益。 



AI结合真实世界数据

充分论证了放宽入组标准产生的影响


一项调查显示,56%的受访医生认为部分入组标准过于严格,限制了临床试验的普适性,但鉴于现有数据,无法就取消特定条件达成共识。随着AI技术与电子病历系统的广泛应用,相关研究证明AI结合真实世界数据可以改善临床试验,例如,AI可自动筛选符合入组标准的患者,提高招募效率。而由美国斯坦福大学James Zou教授等开展的AI研究,评价了放宽入组标准对临床试验结果的影响。 

研究人员从Flatiron Health的电子病历数据库中,选取了280个美国癌症中心的61,094例晚期aNSCLC患者数据;并根据临床试验注册库(ClinicalTrials.gov)检索到的相关药物治疗临床试验,筛选出10项已完成的纳入研究;然后利用AI技术构建Trial Pathfinder工具,对患者诊断、实验室检查指标、生物标志物等不同的入组标准进行编码,使用倾向评分的加权分析法模拟已完成的临床试验,分析真实世界数据中符合入组标准的患者数量与总体生存率风险比(HR)。

图1 基于AI与真实世界数据的研究方案设计 

结果显示,与相关临床试验的治疗方案相同的Flatiron Health病例,仅有30%符合入组标准,且入组标准的严格限制并没降低临床试验的风险比,甚至是增加了风险比,这意味着许多当时不符合入组标准的aNSCLC患者,也能从该治疗方式中获益。 

此外,研究人员对每项aNSCLC临床试验使用不同的入组条件进行多次模拟,结合Shapley值评价每种标准对受试者数量及总生存率风险比的影响(Shapley小于0表示该标准可降低风险比)。结果显示,血压、白蛋白水平、淋巴细胞等几个常见的入组标准纳/排对风险比不会产生实质性的影响,但这些标准放宽后却对入组患者数量产生重大影响。例如,入组标准中的淋巴细胞每增加500个/微升,就相应有6.3%的患者不能进入临床试验。 

图2 各入组标准对临床试验的影响 


基于AI构建新入组标准

入组人数提升107% 风险比下降0.05 

基于上述分析方法,研究人员发现纳入研究的10项aNSCLC临床试验,利用AI工具放宽入组标准后,符合入组标准的患者数量平均值从1553人提升至3209人,提升了107%,而总生存率风险比从0.82下降到0.77。在该研究中,基于AI工具产生的新入组标准较之前的平均少了9个限定条件,再次反映当时不符合入组标准的患者也可从治疗中受益。

图3 3种入组标准的临床试验结果比较 

为进一步验证AI结合真实世界数据能为放宽入组标准提供循证证据,研究人员还利用Trial Pathfinder工具分析了结肠直肠癌、晚期黑色素瘤和转移性乳腺癌等癌症的临床试验,同样论证了一些可纳/排的入组条件,并发现放宽入组标准可将相关临床试验入组患者数量平均增加53%,风险比降低0.13。

图4 其他三种癌症的临床试验评估结果 

研究人员最后指出,过于严格的入组标准限制了患者潜在的治疗获益机会,数据驱动的方式能为放宽临床试验入组标准提供循证证据,其中放宽胆红素、血小板、血红蛋白等入组标准数值被证实是可行的;同时认为该类研究更适用于癌症领域的临床试验,希望随着更多高质量数据的获得,将其扩展到肿瘤学科以外的领域。

参考文献:

Liu Ruishan, Rizzo Shemra, Whipple Samuel, Pal Navdeep, Pineda Arturo Lopez, Lu Michael, Arnieri Brandon, Lu Ying, Capra William, Copping Ryan, Zou James. Evaluating eligibility criteria of oncology trials using real-world data and AI. [J]. Nature,2021,592(7855):



本文由作者自行上传,并且作者对本文图文涉及知识产权负全部责任。如有侵权请及时联系(邮箱:nanxingjun@hmkx.cn
关键词:
AI,肿瘤,证据,风险,癌症

人点赞

收藏

人收藏

打赏

打赏

我有话说

0条评论

0/500

评论字数超出限制

表情
评论

为你推荐

推荐课程


社群

精彩视频

您的申请提交成功

确定 取消
剩余5
×

打赏金额

认可我就打赏我~

1元 5元 10元 20元 50元 其它

打赏

打赏作者

认可我就打赏我~

×

扫描二维码

立即打赏给Ta吧!

温馨提示:仅支持微信支付!