1. World Health Organization. Global Status Report on Noncommunicable Diseases. Geneva, Switzerland: World Health Organization, 2014.
2. Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines. Circulation 2013; 135(11): 1–50.
3. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, Sheikh A, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008; 336 (7659): 1475–82. https://doi.org/10.1136/bmj.39609.449676.25 PMID: 18573856
4. D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study. Circulation 2008; 117(6): 743–53. https://doi.org/10.1161/CIRCULATIONAHA.107.699579 PMID: 18212285
5.Ridker P, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: The reynolds risk score. JAMA 2007; 297(6): 611– 9. https://doi.org/10.1001/jama.297.6.611 PMID: 17299196
6. Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, et al. Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. New England Journal of Medicine 2008; 359(21): 2195–207. https://doi.org/10.1056/NEJMoa0807646 PMID: 18997196
7. Obermeyer Z, Emanuel EJ. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. The New England journal of medicine 2016; 375(13): 1216–9. https://doi.org/10.1056/NEJMp1606181 PMID: 27682033 8. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. Journal of Biomedical Informatics 2002; 35(5–6): 352–9. PMID: 12968784
9. Berglund E, Lytsy P, Westerling R. Adherence to and beliefs in lipid-lowering medical treatments: A structural equation modeling approach including the necessity-concern framework. Patient Education and Counseling 2013; 91(1): 105–12. https://doi.org/10.1016/j.pec.2012.11.001 PMID: 23218590
10. Herrett E, Thomas SL, Schoonen WM, Smeeth L, Hall AJ. Validation and validity of diagnoses in the General Practice Research Database: a systematic review. British journal of clinical pharmacology 2010; 69(1): 4–14. https://doi.org/10.1111/j.1365-2125.2009.03537.x PMID: 20078607
11.Eeg-Olofsson K, Cederholm J, Nilsson PM, Zethelius B, Svensson AM, Gudbjornsdottir S, et al. New aspects of HbA1c as a risk factor for cardiovascular diseases in type 2 diabetes: an observational study from the Swedish National Diabetes Register (NDR). Journal of internal medicine 2010; 268(5): 471– 82. https://doi.org/10.1111/j.1365-2796.2010.02265.x PMID: 20804517
12. Emerging Risk Factors Collaboration. C-Reactive Protein, Fibrinogen, and Cardiovascular Disease Prediction. New England Journal of Medicine 2012; 367(14): 1310–20. https://doi.org/10.1056/ NEJMoa1107477 PMID: 23034020
13. Jardine AG, Gaston RS, Fellstrom BC, Holdaas H. Prevention of cardiovascular disease in adult recipients of kidney transplants. The Lancet; 378(9800): 1419–27.
14. Mason JE, Starke RD, Van Kirk JE. Gamma-glutamyl transferase: a novel cardiovascular risk biomarker. Preventive cardiology 2010; 13(1): 36–41. https://doi.org/10.1111/j.1751-7141.2009.00054.x PMID: 20021625
15. Mullerova H, Agusti A, Erqou S, Mapel DW. Cardiovascular comorbidity in COPD: systematic literature review. Chest 2013; 144(4): 1163–78. https://doi.org/10.1378/chest.12-2847 PMID: 23722528
16. Osborn DP, Hardoon S, Omar RZ, Holt RI, King M, Larsen J, et al. Cardiovascular risk prediction models for people with severe mental illness: results from the prediction and management of cardiovascular risk in people with severe mental illnesses (PRIMROSE) research program. JAMA psychiatry 2015; 72 (2): 143–51. https://doi.org/10.1001/jamapsychiatry.2014.2133 PMID: 25536289
17. Ray WA, Chung CP, Murray KT, Hall K, Stein CM. Atypical Antipsychotic Drugs and the Risk of Sudden Cardiac Death. New England Journal of Medicine 2009; 360(3): 225–35. https://doi.org/10.1056/ NEJMoa0806994 PMID: 19144938
18. Sin DD, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest 2005; 127(6): 1952–9. https:// doi.org/10.1378/chest.127.6.1952 PMID: 15947307
19. Souverein PC, Berard A, Van Staa TP, Cooper C, Egberts ACG, Leufkens HGM, et al. Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case–control study. Heart 2004; 90(8): 859–65. https://doi.org/10.1136/hrt.2003.020180 PMID: 15253953
20. Wannamethee SG, Shaper AG, Perry IJ. Serum creatinine concentration and risk of cardiovascular disease: a possible marker for increased risk of stroke. Stroke; a journal of cerebral circulation 1997; 28 (3): 557–63.
21. Weng SF, Kai J, Guha IN, Qureshi N. The value of aspartate aminotransferase and alanine aminotransferase in cardiovascular disease risk assessment. Open Heart 2015; 2(e000272): 1–10.
22. Batista GEAPA, Monard MC. An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence 2003; 17(5–6): 519–33.
23. Bhaskaran K, Forbes HJ, Douglas I, Leon DA, Smeeth L. Representativeness and optimal use of body mass index (BMI) in the UK Clinical Practice Research Datalink (CPRD). BMJ Open 2013; 3(e003389): 1–8.
24. Assmann G, Cullen P, Schulte H. Simple Scoring Scheme for Calculating the Risk of Acute Coronary Events Based on the 10-Year Follow-Up of the Prospective Cardiovascular Mu¨nster (PROCAM) Study. Circulation 2002; 105(3): 310–5. PMID: 11804985
25. Hosmer DW, Lemeshow S, Sturdivant RX. Applied Logistic Regression, 3rd Edition. New Jersey, USA: John Wiley & Sons; 2013.
26. Breiman L. Random Forests. Machine Learning 2001; 45(1): 5–32.
27. Friedman J. Greedy boosting approximation: a gradient boosting machine. The Annals of Statistics 2001; 29(5): 1189–232.
28. Hagan M, Demuth H, Beale M, De Jesus O. Neural Network Design, 2nd Edition. Boston: PWS Publishers; 2014.
29. Newson R. Comparing the predictive power of survival models using Harrell’s c or Somers’ D. The Stata Journal 2010; 10(3): 339–58.
30. Newson R. Confidence intervals for rank statistics: Somers’ D and extensions. The Stata Journal 2006; 6(3): 309–34.
31. The Emerging Risk Factors Collaboration. C-Reactive Protein, Fibrinogen, and Cardiovascular Disease Prediction. New England Journal of Medicine 2012; 367(14): 1310–20. https://doi.org/10.1056/ NEJMoa1107477 PMID: 23034020
32. Waljee AK, Higgins PDR, Singal AG. A Primer on Predictive Models. Clinical and Translational Gastroenterology 2014; 5(1): e44.
33. Dybowski R, Gant V, Weller P, Chang R. Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. The Lancet 1996; 347(9009): 1146–50.
34.Voss R, Cullen P, Schulte H, Assmann G. Prediction of risk of coronary events in middle-aged men in the Prospective Cardiovascular Mu¨nster Study (PROCAM) using neural networks. International Journal of Epidemiology 2002; 31(6): 1253–62. PMID: 12540731
35. Olden J, Jackson D. Illuminating the "black box": a randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling 2002; 2002(154): 135–50.
36. Bengio Y. Practical Recommendations for Gradient-Based Training of Deep Architectures. In: Montavon G, Orr GB, Mu¨ller K-R, eds. Neural Networks: Tricks of the Trade: Second Edition. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012: 437–78.
37. Woodward M, Brindle P, Tunstall-Pedoe H. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart 2007; 93(2): 172–6. https://doi.org/10.1136/hrt.2006.108167 PMID: 17090561
38. Chen J, Long R, Wang XL, Liu B, Chou KC. dRHP-PseRA: detecting remote homology proteins using profile-based pseudo protein sequence and rank aggregation. Sci Rep 2016; 6(32333): 1–7.
39. Liu B, Long R, Chou KC. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework. Bioinformatics 2016; 32(16): 2411–8. https://doi.org/10.1093/bioinformatics/btw186 PMID: 27153623 40. Liu B, Wang S, Dong Q, Li S, Liu X. Identification of DNA-binding proteins by combining auto-cross covariance transformation and ensemble learning. IEEE Trans Nanobioscience 2016; 15(4): 328–44.
41. Kennedy EH, Wiitala WL, Hayward RA, Sussman JB. Improved cardiovascular risk prediction using nonparametric regression and electronic health record data. Medical care 2013; 51(3): 251–8. https:// doi.org/10.1097/MLR.0b013e31827da594 PMID: 23269109
42. National Institute for Health and Care Excellence. Cardiovascular disease: risk assessment and reduction, including lipid modification. London, UK: National Institute for Health and Care Excellence, 2016.
43. NHS England Board. Personalised Medicine Strategy. London, UK: National Health Service England (NHS England), 2015.
44. Precision Medicine Intiative (PMI) Working Group. The Precision Medicine Initiative Cohort Program— Building a Research Foundation for the 21st Century Medicine. Washington D.C.: National Institutes of Health (NIH), 2015