以AI手段预测癌症复发!科学家利用AI分析肺癌中免疫细胞空间图谱,并成功预测癌症复发风险

2020
06/17

+
分享
评论
奇点糕 /  奇点网
A-
A+
从癌症确诊到筛查,到评价预后,这一次AI开始实践预测患者癌症复发风险,团队表示,技术仍处于早期阶段。

AI登上顶级期刊,现在都不算啥新鲜事了,现在要关注的,是大佬们又玩出了什么花才对。从癌症确诊到筛查,接下来评价预后,预测风险也得安排一下,对吧?近期在《自然·医学》上,发表了一项英国TRACERx肺癌研究计划的成果:科学家们利用人工智能手段,绘制了肺腺癌中免疫细胞的空间位置图谱,可以根据免疫细胞浸润出的“冷区”和“热区”,预测患者的癌症复发风险!

这个最新的AI阅片,把100例患者的多区域外显子组和RNA测序(RNA-seq)数据,与免疫细胞分布的空间组织学信息进行了整合,成功经受了970例肺腺癌患者的队列验证。将来这套工具有望用于临床指导复发高风险患者的诊疗。利用基因突变、分子标记物之类的指标预测癌症复发风险,这种研究奇点糕见过很多,但肿瘤不同部位的异质性,让这种预测总是少了些“立体感”和“空间感”。

举个例子,在免疫细胞浸润比较多的部位,能够实现免疫逃逸,存活下来的癌细胞特征,和那些免疫细胞浸润不到的部位就有明显的差异,这正是TRACERx研究计划发现,并且在去年登上《自然》的成果。而这次研究构建的深度学习模型,比之前的分析更进一步,同时调用了85名患者275个肿瘤区域的切片,从而分析癌细胞、淋巴细胞、间质细胞(成纤维细胞+上皮细胞)和其它细胞(巨噬细胞、肺细胞等)的空间分布特点。

多点取样,深度学习

AI区分免疫细胞和癌细胞的效果,得到了TRACERx研究中,多区域外显子组和RNA测序数据,以及病理科医生阅片等信息的认证,区分准确度达到90%以上。

那么接下来,就可以让AI根据肿瘤区域当中淋巴细胞的浸润比例,来划分免疫“热区”和“冷区”了。从下面这张图可以看出,淋巴细胞的浸润在不同肿瘤区域差异是很明显的,而且冷区的癌细胞进化出的亚克隆更加多样化。


免疫冷区和免疫热区的差别,就是淋巴细胞浸润程度了

划分区域,还是要为指导临床服务。研究团队首先用79例肺腺癌患者的数据进行初步分析,然后调取了TRACERx另外970例患者的预后情况,进行再次验证。验证结果显示,冷区多了真的不好,在970例患者的队列中,AI识别出肿瘤内的“冷区”超过一个,就与癌症复发风险上升48%有关,而这种风险是与肿瘤大小、癌症分期和单个患者的取样个数无关的。

对于冷区和患者复发风险高的关系,研究团队也利用本次研究获取的空间组织学信息,进行了一些初步探索。就拿间质细胞来说,在免疫冷区当中,癌-间质细胞界面的几何不规则性和复杂性显著增加,两种细胞的接触明显增多。接触增多,就会让间质细胞更容易阻止免疫细胞的浸润,帮癌细胞活得更加舒坦。研究团队进行的分析显示,被挡在肿瘤外的淋巴细胞越多,癌细胞的新抗原水平就越高,新抗原多=疗效好的定律,在这种时候就不适用了。

很多淋巴细胞都被挡在了肿瘤之外(蓝点),真正能浸润进去的(黑点)并不多

总体来说,这项研究为临床区分复发高危的癌症患者提供了全新的手段,也为分析癌细胞的免疫逃逸提供了新视角,不过研究团队也表示,这项技术还处于早期阶段,临床应用还需要时日。

本文转载自其他网站,不代表健康界观点和立场。如有内容和图片的著作权异议,请及时联系我们(邮箱:guikequan@hmkx.cn
关键词:
AI医疗,预测风险,免疫细胞空间位置图谱

人点赞

收藏

人收藏

打赏

打赏

我有话说

0条评论

0/500

评论字数超出限制

表情
评论

为你推荐

相关文章

推荐课程


精彩视频

您的申请提交成功

确定 取消
×

打赏作者

认可我就打赏我~

1元 5元 10元 20元 50元 其它

打赏

打赏作者

认可我就打赏我~

×
打赏

扫描二维码

立即打赏给Ta吧!

温馨提示:仅支持微信支付!